Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's start by drawing the situation:
According to this, one of the dimensions of the box is 40-2x. The other one is 30-2x and the last one, that we could say it's the height, is x.
The volume of a box is given by the product of the three dimensions:
[tex]\begin{gathered} V=(40-2x)\cdot(30-2x)\cdot x \\ V=(1200-80x-60x+4x^2)\cdot x \\ V=1200x-140x^2+4x^3 \end{gathered}[/tex]Use the given value of the volume to find x:
[tex]\begin{gathered} 2448=1200x-140x^2+4x^3 \\ 4x^3-140x^2+1200x-2448=0 \end{gathered}[/tex]Factoring this expression we have that:
[tex]\begin{gathered} 4(x-3)(x^2-32x+204)=0 \\ x-3=0 \\ x=3 \end{gathered}[/tex]One of the possible dimensions of the square is 3. Now, solve the quadratic expression (third factor) to find the other 2 options:
[tex]\begin{gathered} x^2-32x+204=0 \\ x=\frac{-(-32)\pm\sqrt[]{(-32)^2-4(1\cdot204)}}{2\cdot1} \\ x=\frac{32\pm\sqrt[]{1024-816}}{2} \\ x=\frac{32\pm\sqrt[]{208}}{2} \\ x1=\frac{32+\sqrt[]{208}}{2} \\ x2=\frac{32-\sqrt[]{208}}{2} \end{gathered}[/tex]It means that the squares can have 3 different dimensions, which are:
[tex]3,\frac{32+\sqrt[]{208}}{2},\frac{32-\sqrt[]{208}}{2}[/tex]Nevertheless, the second possible option is not coherent since it's value is close to 23 and the dimensions of the cardboard are 30 and 40. It means that the possible dimensions are 3 and (32-sqrt(208))/2.

Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.