Solution
Discriminant
- The formula for the discriminant of a quadratic equation is:
[tex]\begin{gathered} \text{ Given,} \\ ax^2+bx+c \\ \\ \text{ The Discriminant is:} \\ D=b^2-4ac \end{gathered}[/tex]
- Applying the formula, we have:
[tex]\begin{gathered} a=1,b=3,c=-6 \\ \\ \therefore D=3^2-4(1)(-6) \\ D=9+24 \\ D=33 \end{gathered}[/tex]
- Discriminant is 33
How many solutions
- If the discriminant is > 0, then, the Quadratic equation has 2 solution.
- If the discriminant is = 0, then, the Quadratic equation has 1 solution
- If the discriminant is < 0, then, the Quadratic equation has no real solutions.
- The discriminant is 33 > 0, thus, the Quadratic equation has 2 solutions
Type of zero
- Since there are 2 solutions, then, it has real solutions
Final Answer
OPTION B