Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Question 25.Show if given 1-1 functions are inverse of each other. Graph both functions on the same set of axes and show the line Y=x as a dotted line on graph.

Question 25Show If Given 11 Functions Are Inverse Of Each Other Graph Both Functions On The Same Set Of Axes And Show The Line Yx As A Dotted Line On Graph class=

Sagot :

Given:

[tex]\begin{gathered} f(x)=3x+1_{} \\ g(x)=\frac{x-1}{3} \end{gathered}[/tex]

To check the given functions are inverses of each other,

[tex]\begin{gathered} To\text{ prove: }f\mleft(g\mleft(x\mright)\mright)=x\text{ and g(f(x)=x} \\ f(g(x))=f(\frac{x-1}{3}) \\ =3(\frac{x-1}{3})+1 \\ =x-1+1 \\ =x \end{gathered}[/tex]

And,

[tex]\begin{gathered} g(f(x))=g(3x+1) \\ =\frac{(3x+1)-1}{3} \\ =\frac{3x+1-1}{3} \\ =\frac{3x}{3} \\ =x \end{gathered}[/tex]

It shows that, the given functions are inverses of each other.

The graph of the function is,

Blue line represents g(x)

Red line represents f(x)

green line represents y=x

View image AngelicF85908