Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To begin answering the question, let us familiarize ourselves with some basic terms
Linear Pairs: Two adjacent angles are a linear pair when their noncommon sides are opposite rays.
If you know the measure of one angle in a linear pair, you can find the measure of the other because the sum of the measure of the two angles is 180 degrees.
Vertical angles: Vertical angles are a pair of opposite angles formed by intersecting lines.
Vertical angles are equal.
We can now apply this knowledege to find the required angles
To find the measure of angle 1 (m<1)
[tex]\begin{gathered} m<1\text{ and 25}^0\text{ are linear pairs} \\ so\text{ they add up to 180}^0 \\ \end{gathered}[/tex]This means that
[tex]\begin{gathered} m<1+25^0=180^0 \\ m<1=180^0-25^0 \\ m<1=155^0 \end{gathered}[/tex]Thus, m<1 = 155°
To find the measure of angle 2 (m<2)
[tex]\begin{gathered} m<2\text{ and 25}^0\text{ are vertical angles} \\ \text{This means that they are equal} \end{gathered}[/tex]Hence,
[tex]m<2=25^0[/tex]m<2 =25°
To get the measure of angle 3 (m<3)
Given: Line t is perpendicular to s
Wehen two lines are perpendicular to eachother, they meet at right angle
This means that
[tex]m<3=90^0[/tex]Thus,
m<3=90°
Hence, the summary of the solution is shown below
[tex]\begin{gathered} m\angle1\Rightarrow155^0 \\ m\angle2\Rightarrow25^0 \\ m\angle3\Rightarrow90^0 \end{gathered}[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.