Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

step by step on how to solve 3/4 - 1/2 × 7/8

Sagot :

EXPLANATION

Given the following operation:

3/4 - 1/2*7/8

First, let's solve 1/2*7/8:

Multiply fractions: a/b* c/d = (a*c)/(b*d)

[tex]=\frac{1\cdot7}{2\cdot8}[/tex]

Multiply the numbers: 1*7 = 7

[tex]=\frac{7}{2\cdot8}[/tex]

Multiply the numbers 2*8=16

[tex]=\frac{3}{4}-\frac{7}{16}[/tex]

Now, we need the Least Common Multiplier of 4, 16:

The LCM of a, b is the samllest positive number that is divisible by both a and b:

Prime factorization of 4:

4 divides by 2 ---> 4= 2*2

2 is a primer number, therefore no further factorization is possible.

Prime factorization of 16:

Multiply each factor the greatest number of times it occurs in either 4 or 16

= 2*2*2*2

Multiply the numbers: 2*2*2*2 = 16

Adjust fractions based on LCM

For 3/4: multiply the denominator and numerator by 4

[tex]\frac{3}{4}=\frac{3\cdot4}{3\cdot4}=\frac{12}{16}[/tex][tex]=\frac{12}{16}-\frac{7}{16}[/tex]

Since the denominators are equal, combine the fractions:

[tex]=\frac{12-7}{16}[/tex]

Subtract the numbers: 12-7 = 5

[tex]=\frac{5}{16}[/tex]