Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

a) Form a suitable equation to show that x squared - 6x - 59 = 0b) Complete the square (x+p)squared-q= 0, and find the constants p and q.

A Form A Suitable Equation To Show That X Squared 6x 59 0b Complete The Square Xpsquaredq 0 And Find The Constants P And Q class=

Sagot :

Given:

There is a triangle given as

Required:

We want to find the sutiable form that show that

[tex]x^2+6x-59=0[/tex]

and also complete the square

[tex](x+p)^2-q=0[/tex]

and find the value of p and q

Explanation:

The area of triangle is

[tex]\begin{gathered} \frac{1}{2}(x+1)(x+5)=32 \\ \\ x^2+5x+x+5=64 \\ x^2+6x-59=0 \end{gathered}[/tex]

hence proved for a

Now for second

[tex]\begin{gathered} x^2+6x+9-9-59=0 \\ (x+3)^2-68=0 \end{gathered}[/tex]

now compare with

[tex](x+p)^2-q=0[/tex]

we get

[tex]\begin{gathered} p=3 \\ q=68 \end{gathered}[/tex]

Final answer:

p=3 and q=68

View image DoryanM723263