Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

A zero-coupon bond is a bond that is sold now at a discount and will pay its face value at the time when it matures; no interest payments are made.A zero-coupon bond can be redeemed in 20 years for $10,000.  How much should you be willing to pay for it now if you want the following returns?(a) 8% compounded daily(b) 8% compounded continuously

Sagot :

EXPLANATION:

We are given a zero-coupon bond that will be worth $10,000 if redeemed in 20 years time at an annual rate of 8% compounded;

(a) Daily

(b) Continuously

The formula for compounding annually is given as follows;

[tex]A=P(1+r)^t[/tex]

Here the variables are;

[tex]\begin{gathered} P=initial\text{ investment} \\ A=Amount\text{ after the period given} \\ r=rate\text{ of interest} \\ t=time\text{ period \lparen in years\rparen} \end{gathered}[/tex]

Note that this zero-coupon bond will yield an amount of $10,000 after 20 years at the rate of 8%. This means we already have;

[tex]\begin{gathered} A=10,000 \\ r=0.08 \\ t=20 \end{gathered}[/tex]

(a) For interest compounded daily, we would use the adjusted formula which is;

[tex]A=P(1+\frac{r}{365})^{t\times365}[/tex]

This assumes that there are 365 days in a year.

We now have;

[tex]10000=P(1+\frac{0.08}{365})^{20\times365}[/tex][tex]10000=P(1.00021917808)^{7300}[/tex][tex]10000=P(4.95216415047)[/tex]

Now we divide both sides by 4.95216415047;

[tex]P=\frac{10000}{4.95216415047}[/tex][tex]P=2019.31916959[/tex]

We can round this to 2 decimal places and we'll have;

[tex]P=2019.32[/tex]

(b) For interest compounded continuously, we would use the special formula which is;

[tex]A=Pe^{rt}[/tex]

Note that the variable e is a mathematical constant whose value is approximately;

[tex]e=2.7183\text{ \lparen to }4\text{ }decimal\text{ }places)[/tex][tex]10000=Pe^{0.08\times365}[/tex][tex]10000=Pe^{29.2}[/tex]

With the use of a calculator we have the following value;

[tex]\frac{10000}{e^{29.2}}=P[/tex]

Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.