Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

if triangle ABC has sides of length 9, 15, and 3x, between which two numbers must the value of x lie?

Sagot :

Let's employ the triangle inequality here.

If the sides were to form a triangle.

Then if 3x was the longest side, it must be less than the sum of 15 and 9, being the other 2 sides.

So;

[tex]\begin{gathered} 3x<15+9 \\ 3x<24 \\ x<8 \end{gathered}[/tex]

If 3x was the shortest side, then 15 would be the longest side, and thus

3x plus 9 must be greater than 15,

So;

[tex]\begin{gathered} 3x+9>15 \\ 3x>15-9 \\ 3x>6 \\ x>2 \end{gathered}[/tex]

So, the range of values for which x must lie is;

[tex]2i.e any values greater than 2 but less than 8.

Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.