Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Question A.
The initial population ocurrs at t=0. Then, by substituting this value into the given model ,we get
[tex]N(0)=\frac{2040}{1+39e^0}[/tex]which gives
[tex]\begin{gathered} N(0)=\frac{2040}{1+30} \\ N(0)=\frac{2040}{40} \\ N(0)=51 \end{gathered}[/tex]then, the answer is 51 owls.
Question B.
The limits when t approaches to + infinity is
[tex]\begin{gathered} N(0)=\frac{2040}{1+39e^{-\infty}} \\ N(0)=\frac{2040}{1+0} \\ N(0)=\frac{2040}{1}=2040 \end{gathered}[/tex]then, the answer is 2040 owls.
Question 15.
In this case, we need to find t when N(t) is 950, that is,
[tex]950=\frac{2040}{1+39e^{-0.5t}}[/tex]By moving the denominator to the left hand side, we have
[tex](1+39e^{-0.5t})950=2040[/tex]then, by moving 950 to the right hand side, we obtain
[tex]\begin{gathered} (1+39e^{-0.5t})=\frac{2040}{950} \\ 39e^{-0.5t}=\frac{2040}{950}-1 \end{gathered}[/tex]which is
[tex]39e^{-0.5t}=1.147368[/tex]so, we get
[tex]\begin{gathered} e^{-0.5t}=\frac{1.147368}{39} \\ e^{-0.5t}=0.029419 \end{gathered}[/tex]By applying natural logarithms to both sides, we have
[tex]\begin{gathered} -0.5t=\ln (0.029419) \\ t=\frac{-\ln(0.029419)}{0.5} \end{gathered}[/tex]then, the answer is
[tex]t=7.05[/tex]By rounding o the neares interger, the answer is 7 years
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.