Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Question A.
The initial population ocurrs at t=0. Then, by substituting this value into the given model ,we get
[tex]N(0)=\frac{2040}{1+39e^0}[/tex]which gives
[tex]\begin{gathered} N(0)=\frac{2040}{1+30} \\ N(0)=\frac{2040}{40} \\ N(0)=51 \end{gathered}[/tex]then, the answer is 51 owls.
Question B.
The limits when t approaches to + infinity is
[tex]\begin{gathered} N(0)=\frac{2040}{1+39e^{-\infty}} \\ N(0)=\frac{2040}{1+0} \\ N(0)=\frac{2040}{1}=2040 \end{gathered}[/tex]then, the answer is 2040 owls.
Question 15.
In this case, we need to find t when N(t) is 950, that is,
[tex]950=\frac{2040}{1+39e^{-0.5t}}[/tex]By moving the denominator to the left hand side, we have
[tex](1+39e^{-0.5t})950=2040[/tex]then, by moving 950 to the right hand side, we obtain
[tex]\begin{gathered} (1+39e^{-0.5t})=\frac{2040}{950} \\ 39e^{-0.5t}=\frac{2040}{950}-1 \end{gathered}[/tex]which is
[tex]39e^{-0.5t}=1.147368[/tex]so, we get
[tex]\begin{gathered} e^{-0.5t}=\frac{1.147368}{39} \\ e^{-0.5t}=0.029419 \end{gathered}[/tex]By applying natural logarithms to both sides, we have
[tex]\begin{gathered} -0.5t=\ln (0.029419) \\ t=\frac{-\ln(0.029419)}{0.5} \end{gathered}[/tex]then, the answer is
[tex]t=7.05[/tex]By rounding o the neares interger, the answer is 7 years
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.