At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Rain equation of a hyperbola given the foci and the asymptotes

Rain Equation Of A Hyperbola Given The Foci And The Asymptotes class=

Sagot :

Explanation

The equation for a hyperbola that opens up and down has the following general form:

[tex]\frac{(y-k)^2}{a^2}-\frac{(x-h)^2}{b^2}=1[/tex]

Where the foci of the hyperbola are located at (h,k+c) and (h,k-c) with c given by:

[tex]c^2=a^2+b^2[/tex]

And asymptotes with slopes given by a/b and -a/b.

The hyperbola with the equation that we have to find has these two foci:

[tex](3,2-\sqrt{26})\text{ and }(3,2+\sqrt{26})[/tex]

This means that:

[tex]\begin{gathered} (h,k-c)=(3,2-\sqrt{26}) \\ (h,k+c)=(3,2+\sqrt{26}) \end{gathered}[/tex]

So we get h=3, k=2 and c=√26.

The slope of the asymptotes have to be 5 and -5 which means that:

[tex]\frac{a}{b}=5[/tex]

Using the value of c we have:

[tex]c^2=26=a^2+b^2[/tex]

So we have two equation for a and b. We can take the first one and multiply b to both sides:

[tex]\begin{gathered} \frac{a}{b}\cdot b=5b \\ a=5b \end{gathered}[/tex]

And we use this in the second equation:

[tex]\begin{gathered} 26=(5b)^2+b^2=25b^2+b^2 \\ 26=26b^2 \end{gathered}[/tex]

We divide both sides by 26:

[tex]\begin{gathered} \frac{26}{26}=\frac{26b^2}{26} \\ b^2=1 \end{gathered}[/tex]

Which implies that b=1. Then a is equal to:

[tex]a=5b=5\cdot1=5[/tex]Answer

Now that we have found a, b, h and k we can write the equation of the hyperbola. Then the answer is:

[tex]\frac{(y-2)^2}{5^2}-\frac{(x-3)^2}{1^2}=1[/tex]