Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Explanation
The equation for a hyperbola that opens up and down has the following general form:
[tex]\frac{(y-k)^2}{a^2}-\frac{(x-h)^2}{b^2}=1[/tex]Where the foci of the hyperbola are located at (h,k+c) and (h,k-c) with c given by:
[tex]c^2=a^2+b^2[/tex]And asymptotes with slopes given by a/b and -a/b.
The hyperbola with the equation that we have to find has these two foci:
[tex](3,2-\sqrt{26})\text{ and }(3,2+\sqrt{26})[/tex]This means that:
[tex]\begin{gathered} (h,k-c)=(3,2-\sqrt{26}) \\ (h,k+c)=(3,2+\sqrt{26}) \end{gathered}[/tex]So we get h=3, k=2 and c=√26.
The slope of the asymptotes have to be 5 and -5 which means that:
[tex]\frac{a}{b}=5[/tex]Using the value of c we have:
[tex]c^2=26=a^2+b^2[/tex]So we have two equation for a and b. We can take the first one and multiply b to both sides:
[tex]\begin{gathered} \frac{a}{b}\cdot b=5b \\ a=5b \end{gathered}[/tex]And we use this in the second equation:
[tex]\begin{gathered} 26=(5b)^2+b^2=25b^2+b^2 \\ 26=26b^2 \end{gathered}[/tex]We divide both sides by 26:
[tex]\begin{gathered} \frac{26}{26}=\frac{26b^2}{26} \\ b^2=1 \end{gathered}[/tex]Which implies that b=1. Then a is equal to:
[tex]a=5b=5\cdot1=5[/tex]AnswerNow that we have found a, b, h and k we can write the equation of the hyperbola. Then the answer is:
[tex]\frac{(y-2)^2}{5^2}-\frac{(x-3)^2}{1^2}=1[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.