Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Solution
For this case we have the following data:
x y
0 996
1 923
2 882
3 892
4 840
5 813
sum xi = 15
sum yi = 5346
sum xi yi = 12788
sum xi^2 = 55
And we want to find and equation like this one:
y= mx+ b
So then we can estimate the slope using least squares and we have:
[tex]m=\frac{n\sum ^n_{i=1}x_iy_i-\sum ^n_{i=1}x_i\sum ^n_{i=1}y_i}{n(\sum ^n_{i=1}x^2_i)-(\sum ^n_{i=1}x_i)^2}[/tex]Replacing we have:
[tex]m=\frac{6\cdot12788-(15\cdot5346)}{6(55)-(15)^2}=\frac{-3462}{105}=-32.971[/tex]m= -32.971
And the intercept would be:
[tex]b=\frac{\sum^n_{i=1}y_i}{n}-m\cdot\frac{\sum^n_{i=1}x_i}{n}=\frac{5346}{6}-(-32.971)\cdot\frac{15}{6}=973.429[/tex]b= 973.428
Then the equation would be:
y= -32.971x+ 973.428
And we can find the value of x for y = 767 and we got::
767 = -32.971x+ 973.428
Solcing for x we have:
767- 973.428 = -32.971 x
x= 6.26
Regression Equation: y= -32.9x + 973.4
Final Answer: 2012
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.