Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

If tan theta = 4/3 and pi

Sagot :

Given that tan theta = 4/3 and theta lies in the third quadrant.

[tex]\pi<\theta<\frac{3\pi}{2}[/tex]

Divide the compound inequality by 2.

[tex]\frac{\pi}{2}<\frac{\theta}{2}<\frac{3\pi}{4}[/tex]

This means theta/2 lies in the second quadrant. So, cos theta/2 and sec theta/2 are negative.

Use trigonometric identities to find sec theta.

[tex]\begin{gathered} \sec \theta=\sqrt[]{1+\tan ^2\theta} \\ =\sqrt[]{1+(\frac{4}{3})^2} \\ =\sqrt[]{1+\frac{16}{9}} \\ =\sqrt[]{\frac{25}{9}} \\ =-\frac{5}{3} \end{gathered}[/tex]

we know that cosine is the inverse of secant. So, cos theta = -3/5.

now, using the half-angle formula, we have to find cos theta/2,

[tex]\begin{gathered} \cos (\frac{\theta}{2})=-\sqrt[]{\frac{1+\cos x}{2}} \\ =-\sqrt[]{\frac{1-\frac{3}{5}}{2}} \\ =-\sqrt[]{\frac{\frac{2}{3}}{2}} \\ =-\sqrt[]{\frac{1}{3}} \end{gathered}[/tex]

Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.