Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

find the absolute extrema for the function on the given inveral

Find The Absolute Extrema For The Function On The Given Inveral class=

Sagot :

In order to find the minimum and maximum value in the given interval, first let's find the vertex coordinates:

[tex]\begin{gathered} f(x)=3x^2-24x \\ a=3,b=-24,c=0 \\ \\ x_v=\frac{-b}{2a}=\frac{24}{6}=4 \\ y_v=3\cdot4^2-24\cdot4=3\cdot16-96=-48 \end{gathered}[/tex]

Since the coefficient a is positive, so the y-coordinate of the vertex is a minimum point, therefore the absolute minimum is (4,-48).

Then, to find the maximum, we need the x-coordinate that is further away from the vertex.

Since 0 is further away from 4 than 7, let's use x = 0:

[tex]f(0)=3\cdot0-24\cdot0=0[/tex]

Therefore the absolute maximum is (0,0).

Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.