Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

The following is a sample of 20 measurements.Answer b part

The Following Is A Sample Of 20 MeasurementsAnswer B Part class=
The Following Is A Sample Of 20 MeasurementsAnswer B Part class=

Sagot :

b)

Given:

[tex]\begin{gathered} \bar{x}=10.2 \\ s=2.12 \end{gathered}[/tex]

Hence,

[tex]\begin{gathered} \bar{x}\pm s=10.2\pm2.12 \\ \bar{x}+s=12.32 \\ \bar{x}-s=8.08 \end{gathered}[/tex]

So, the measurements in the data between 8.08 and 12.32 are 11, 9, 12, 10 12, 12 , 12, 9, 9, 9, 11, 11, 12 and 11.

Therefore, the number of measurements in interval x±s is 14.

The percentage of the measurements that fall between the interval x±s is,

[tex]\text{Percent}=\frac{14}{20}\times100=70[/tex]

Therefore, the percentage of the measurements that fall between the interval x±s is 70%.

Now,

[tex]\begin{gathered} \bar{x}\pm2s=10.2\pm2\times2.12 \\ \bar{x}\pm2s=10.2\pm4.24 \\ \bar{x}+2s=14.44 \\ \bar{x}-2s=5.96 \end{gathered}[/tex]

So, all the measurements in the data are between 5.96 and 14.44.Therefore, the number of measurements in interval x±2s is 20.

Therefore, the percentage of the measurements that fall between the interval x±2s is 100%.

Now,

[tex]\begin{gathered} \bar{x}\pm3s=10.2\pm3\times2.12 \\ \bar{x}\pm3s=10.2\pm6.36 \\ \bar{x}+3s=16.56 \\ \bar{x}-3s=3.84 \end{gathered}[/tex]

So, all the measurements in the data are between 3.84 and 16.56.Therefore, the number of measurements in interval x±3s is 20.

Therefore, the percentage of the measurements that fall between the interval x±3s is 100%.

Last part: compare the percentage .

According to empirical rule, approximately 68% of the measurements in a sample will fall within the interval x±s.

From part b, the obtained percentage of measurements that fall within the interval x±s is 70%.

Therefore, percentage of measurements that fall within the interval x±s is greater than the predicted percentage for x±s using the empirical rule.

Option C is correct.