Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
We have the following:
- 5 possible about genetics and need fewer than 3 (so it can be 0, 1 or 2).
- 8 about ethics
- want to select 6 in total.
We can calculate all the possible ways by doing it in three situations:
1 - From the 6, 0 will be genetics and 6 will be ethics
2 - From the 6, 1 will be genetics and 5 will be ethics
3 - From the 6, 2 will be genetics and 4 will be ethics
All of these will have to add up to find the total number of ways.
1 - 0 genetics, 6 ethics:
Since no genetics will be chosen, we can choose any 6 from the 8 possible about ethics, that is, we have a situation of "8 choose 6"
The equation for a situation "n choose k" and the number of ways in it is:
[tex]n=\frac{n!}{k!(n-k)!}[/tex]So, if we have "8 choose 6":
[tex]n_1=\frac{8!}{6!(8-6)!}=\frac{8\cdot7\cdot6!}{6!2!}=\frac{8\cdot7}{2}=4\cdot7=28[/tex]So, in this first we have 28 ways.
2 - 1 genetics, 5 ethics:
Here, we will have one equation for each and the total number of ways will be the multiplication of both.
For genetics, we have to pick 1 from 5, so "5 choose 1":
[tex]\frac{5!}{1!(5-1)!}=\frac{5\cdot4!}{4!}=5_{}[/tex]For ethics, we have to pick 5 from 8, so "8 choose 5":
[tex]\frac{8!}{5!(8-5)!}=\frac{8\cdot7\cdot6\cdot5!}{5!3!}=\frac{8\cdot7\cdot6}{3\cdot2}=8\cdot7=56[/tex]So, the total number of ways is the multiplicatinos of them:
[tex]n_2=5\cdot56=280[/tex]3 - 2 genetics, 4 ethics:
Similar to the last one.
For genetics, we have to pick 2 from 5, so "5 choose 2":
[tex]\frac{5!}{2!(5-2)!}=\frac{5\cdot4\cdot3!}{2\cdot3!}=\frac{5_{}\cdot4}{2}=5\cdot2=10[/tex]For ethics, we have to pick 4 from 8, so "8 choose 4":
[tex]\frac{8!}{4!(8-4)!}=\frac{8\cdot7\cdot6\cdot5\cdot4!}{4!4!}=\frac{8\cdot7\cdot6\cdot5}{4\cdot3\cdot2}=2\cdot7\cdot5=70[/tex]So, the total number of ways is the multiplicatinos of them:
[tex]n_3=10\cdot70=700[/tex]Now, the total number of ways is the sum of all these possibilities, so:
[tex]\begin{gathered} n=n_1+n_2+n_3 \\ n=28+280+700 \\ n=1008 \end{gathered}[/tex]So, the total number of ways is 1008.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.