Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer
The estimated number of plants after 3 months using the logistic model = 70 blackberry plants
Explanation
If a population is growing in a constrained environment with carrying capacity K, and absent constraint would grow exponentially with growth rate r, then the population behavior can be described by the logistic growth model:
[tex]P_n=P_{n-1}+r(1-\frac{P_{n-1}}{K})P_{n-1}[/tex]From the question,
[tex]\begin{gathered} P_0=18,r=85\%=0.85,K=100 \\ \\ So, \\ \\ P_n=P_{n-1}=+0.85(1-\frac{P_{n-1}}{100})P_{n-1} \end{gathered}[/tex]After the first month,
[tex]\begin{gathered} P_{n-1}=P_0=18 \\ \\ \therefore P_1=P_0+0.85(1-\frac{P_0}{100})P_0 \\ \\ P_1=18+0.85(1-\frac{18}{100})18 \\ \\ P_1=18+0.85(1-0.18)18=18+0.85\times0.82\times18 \\ \\ P_1=18+12.546 \\ \\ P_1=30.546\text{ }plants \end{gathered}[/tex]After the second month,
[tex]\begin{gathered} P_1=30.546 \\ \\ \therefore P_2=P_1+0.85(1-\frac{P_1}{100})P_1 \\ \\ P_2=30.546+0.85(1-\frac{30.546}{100})30.546 \\ \\ P_2=30.546+0.85(1-0.30546)30.546=30.546+0.85\times0.69454\times30.546 \\ \\ P_2=30.546+18.033 \\ \\ P_2=48.579\text{ }plants \end{gathered}[/tex]So after 3 months,
[tex]\begin{gathered} P_2=48.579 \\ \\ \therefore P_3=P_2+0.85(1-\frac{P_2}{100})P_2 \\ \\ P_3=48.579+0.85(1-\frac{48.579}{100})48.579 \\ \\ P_3=48.579+0.85(1-0.48579)48.579=48.5796+0.85\times0.5142\times48.579 \\ \\ P_3=48.579+21.232 \\ \\ P_3=69.811\text{ }plants \\ \\ P_3\approx70\text{ }blackberry\text{ }plants \end{gathered}[/tex]The estimated number of plants after 3 months using the logistic model = 70 blackberry plants.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.