Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
The simplify an expression as a frection, we need to find eqaul terms in the nominator and denominator, to cancell them. The idea is, if we have a number called n, and a expression like:
[tex]\frac{nx}{ny}[/tex]We can divide n by n in order to get a simplifyed expression.
In this case we have:
[tex]\frac{d}{dx}(\frac{-4x^2+16}{(x^2+4)^2})=\frac{(x^2+4)^2\cdot(-8x)-4x(x^2+4)(-4x+16)}{(x^2+4)^4}[/tex]We can see that the term (x² + 4) is repeated in the numerator and denominator. To do this easier, let's separate this in a sum of fractions:
[tex]\frac{(x^2+4)^2\cdot(-8x)-4x(x^2+4)(-4x+16)}{(x^2+4)^4}=\frac{(x^2+4)^2\cdot(-8x)}{(x^2+4)^4}-\frac{4x(x^2+4)(-4x+16)}{(x^2+4)^4}[/tex]Now it's much easier to cancell the repeated terms:
In the first fraction, we have the parentheses squared in the numerator and power of 4 in the denominator, to divide it, we can use the power propierties:
[tex]\frac{a^n}{a^m}=a^{n-m}[/tex]Then:
[tex]\frac{(x^2+4)^2}{(x^2+4)^4}=(x^2+4)^{2-4}=(x^2+4)^{-2}=\frac{1}{(x^2+4)^2}[/tex]And now the first fraction is:
[tex]\frac{(x^2+4)^2\cdot(-8x)}{(x^2+4)^4}=\frac{1}{(x^2+4)^2}\cdot(-8x)=-\frac{8x}{(x^2+4)^2}[/tex]For the second fraction is very similar:
[tex]\frac{4x(x^2+4)(-4x+16)}{(x^2+4)^4}[/tex]We have the same term (x² + 4) , in the numerator and denominator. Then divide:
[tex]\frac{(x^2+4)}{(x^2+4)^4}=(x^2+4)^{1-4}=(x^2+4)^{-3}=\frac{1}{(x^2+4)^3}[/tex]Then the second fraction is:
[tex]4x(-4x+16)\cdot\frac{1}{(x^2+4)^3}=\frac{4x(-4x^2+16)}{(x^2+4)^3}[/tex]Now we can add the two fraction to get the final asnwer:
[tex]\frac{d}{dx}(\frac{-4x^2+16}{(x^2+4)^2})=-\frac{8x}{(x^2+4)^2}-\frac{4x(-4x^2+16)}{(x^2+4)^3}[/tex]And that's all the simplifying we can do with this derivative
If we look at the second fraction, we have a difference of squares:
[tex](16-4x^2)=(4^2-2x^2)[/tex]Thus:
[tex](4^2-2x^2)=(4-2x)(4+2x)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.