Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

The problem is the first one illustrated. There is 2 answers that I have received through different sources, I am wondering which one is the correct answer. They are illustrated underneath the problem. Please just let me know which one is correct.

The Problem Is The First One Illustrated There Is 2 Answers That I Have Received Through Different Sources I Am Wondering Which One Is The Correct Answer They A class=
The Problem Is The First One Illustrated There Is 2 Answers That I Have Received Through Different Sources I Am Wondering Which One Is The Correct Answer They A class=
The Problem Is The First One Illustrated There Is 2 Answers That I Have Received Through Different Sources I Am Wondering Which One Is The Correct Answer They A class=

Sagot :

[tex]\begin{gathered} \text{The rational function which gives the given condition} \\ f(x)\text{ = }\frac{2(x-2)^2\text{(x + 1)}}{3(x\text{ + 2)(x - 3)(x + 1)}} \end{gathered}[/tex]

Explanation:

comparing the two function you have:

[tex]\begin{gathered} 1)\text{ }f(x)\text{ = }\frac{2x(x\text{ - 2)(x + 1)}}{3(x\text{ + 2)(x - 3)(x + 1)}} \\ \\ In\text{ this function:} \\ x\text{ intercepts: x = 0 and x - 2 = 0} \\ x\text{ = 0 and x = 2} \\ \\ \text{The hole is the factor co}mmon\text{ to both numerator and denominator:} \\ (x\text{ + 1) is co}mmon\text{ to both numerator and denominator} \\ \\ \text{vertical asymptote: Equate denominator to zero:} \\ (x\text{ + 2) = 0 , (x - 3) = 0 , (x + 1) = 0 \lbrack(x+1) is a hole, so we won't include it} \\ \text{vertical asymptote: }x\text{ = -2, x = 3 } \\ \\ \text{horizontal asymptote = 2/3} \end{gathered}[/tex]

2nd function:

[tex]\begin{gathered} 2)\text{ }f(x)\text{ = }\frac{2(x-2)^2\text{(x + 1)}}{3(x\text{ + 2)(x - 3)(x + 1)}} \\ \\ In\text{ this function:} \\ x\text{ intercept: (x - 2) twice} \\ x\text{ - 2= 0} \\ x\text{ intercept: x = 2} \\ \\ The\text{ hole is factor co}mmon\text{ to both numerator and denominator} \\ (x\text{ + 1) is co}mmon\text{ to both numerator and denominator} \\ x\text{ + 1 = 0} \\ x\text{ = -1 (is a hole)} \\ \\ \text{vertical asymptote: Equate denominator to zero} \end{gathered}[/tex][tex]\begin{gathered} \text{vertical asymptote: Equate denominator to zero} \\ (x\text{ + 2) = 0 , (x - 3) = 0 , (x + 1) = 0} \\ \text{ (x + 1) = 0 is a hole, so we won't include it} \\ \text{vertical asymptote: }x\text{ = -2, x = 3} \\ \\ \text{horizontal asymptote = 2/3} \end{gathered}[/tex]

The difference between both functions is the x-intercept

The first function have two intercepts while the second function have only one x-intercept

From our question, the x intercept is supposed to be just 1

we were given the x-intercept as x = 2

Function has x -intercept as 2.

Function 2 is the correct representation of the rational function that gives those conditions in the question

[tex]f(x)\text{ = }\frac{2(x-2)^2\text{(x + 1)}}{3(x\text{ + 2)(x - 3)(x + 1)}}[/tex]

Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.