Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Operations with Radical ExpressionsThis is a new topic that I’ve never done before so I’m not sure where to start

Operations With Radical ExpressionsThis Is A New Topic That Ive Never Done Before So Im Not Sure Where To Start class=

Sagot :

We need to simplify the expression:

[tex]-2\sqrt[]{20}-2\sqrt[]{24}-2\sqrt[]{24}[/tex]

We can start by grouping the second and third terms since they have the same factor:

[tex]-2\sqrt[]{24}-2\sqrt[]{24}=(-2-2)\sqrt[]{24}=-4\sqrt[]{24}[/tex]

Then, we need to simplify:

[tex]-2\sqrt[]{20}-4\sqrt[]{24}[/tex]

Now, we can factor the number inside each square root:

[tex]\begin{gathered} 20=2\cdot2\cdot5=2^2\cdot5 \\ \\ 24=2\cdot2\cdot2\cdot3=2^2\cdot6 \end{gathered}[/tex]

And we can use the following properties:

[tex]\begin{gathered} \sqrt[]{a.b}=\sqrt[]{a}\cdot\sqrt[]{b} \\ \\ \sqrt[]{n^{2}}=n,\text{ for }n\ge0 \end{gathered}[/tex]

Then, we obtain:

[tex]\begin{gathered} \sqrt[]{20}=\sqrt[]{2^2\cdot5}=\sqrt[]{2^{2}}\cdot\sqrt[]{5}=2\sqrt[]{5} \\ \\ \sqrt[]{24}=\sqrt[]{2^2\cdot6}=\sqrt[]{2^{2}}\cdot\sqrt[]{6}=2\sqrt[]{6} \end{gathered}[/tex]

Using the above results in the expression, we find:

[tex]-2\sqrt[]{20}-4\sqrt[]{24}=-2\cdot2\sqrt[]{5}-4\cdot2\sqrt[]{6}=-4\sqrt[]{5}-4\cdot2\sqrt[]{6}[/tex]

Since both terms have the factor -4, we can group it to obtain:

[tex]-4(\sqrt[]{5}+2\sqrt[]{6})[/tex]

Therefore, a way to simplify the given expression is by writing it as:

[tex]-4(\sqrt[]{5}+2\sqrt[]{6})[/tex]

Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.