Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

What is the z-score if u = 89, 0 = 11.5, and x = 82?O 1.370 -0.610.790 -1.21

Sagot :

The standard normal distribution (Z) is defined as the difference between the value of the variable, X, and the population mean, μ, and the result divided by the population standard deviation, σ.

[tex]Z=\frac{X-\mu}{\sigma}\approx N(0,1)[/tex]

For a determined population with normal distribution, the mean is μ=89, the standard deviation is σ=11.5 and the value of the variable is X=82, you can calculate the Z-value as follows:

[tex]\begin{gathered} Z=\frac{82-89}{11.5} \\ Z=\frac{-7}{11.5} \\ Z=-0.608\approx-0.61 \end{gathered}[/tex]

The Z-value is -0.61