Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
For the given equation;
[tex](3x-5)^2=-125[/tex]We shall begin by expanding the parenthesis on the left side, after which we would combine all terms on and move all of them to the left side, which shall yield a quadratic equation. Then we shall solve.
Let us begin by expanding the parenthesis;
[tex]\begin{gathered} (3x-5)^2\Rightarrow(3x-5)(3x-5) \\ (3x-5)(3x-5)=9x^2-15x-15x+25 \\ (3x-5)^2=9x^2-30x+25 \end{gathered}[/tex]Now that we have expanded the left side of the equation, we would have;
[tex]\begin{gathered} 9x^2-30x+25=-125 \\ \text{Add 125 to both sides and we'll have;} \\ 9x^2-30x+25+125=-125+125 \\ 9x^2-30x+150=0 \end{gathered}[/tex]We shall now solve the resulting quadratic equation using the quadratic formula as follows;
[tex]\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \text{Where;} \\ a=9,b=-30,c=150 \\ x=\frac{-(-30)\pm\sqrt[]{(-30)^2-4(9)(150)}}{2(9)} \\ x=\frac{30\pm\sqrt[]{900-5400}}{18} \\ x=\frac{30\pm\sqrt[]{-4500}}{18} \\ x=\frac{30\pm\sqrt[]{-900\times5}}{18} \\ x=\frac{30\pm\sqrt[]{-900}\times\sqrt[]{5}}{18} \\ x=\frac{30\pm30i\sqrt[]{5}}{18} \\ \text{Therefore;} \\ x=\frac{30+30i\sqrt[]{5}}{18},x=\frac{30-30i\sqrt[]{5}}{18} \\ \text{Divide all through by 6, and we'll have;} \\ x=\frac{5+5i\sqrt[]{5}}{3},x=\frac{5-5i\sqrt[]{5}}{3} \end{gathered}[/tex]ANSWER:
[tex]x=\frac{5+5i\sqrt[]{5}}{3},x=\frac{5-5i\sqrt[]{5}}{3}[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.