Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
The acute angle lies between the vectors a=3i+4j and b=7i+j is 45°
Explanation:The given vectors are:
a = 3i + 4j
b = 7i + j
The acute angle between vectors a and and b is given by the formula:
[tex]\theta=\cos ^{-1}\frac{a.b}{|a\mleft\Vert b\mright|}[/tex]The scalar product of vectors a and b is:
a.b = (3i + 4j).(7i + j)
a.b = (3x7) + (4x1)
a.b = 21 + 4
a.b = 25
The magnitude of a is:
[tex]\begin{gathered} |a|=\sqrt[]{3^2+4^2} \\ |a|=\sqrt[]{9+16} \\ |a|=\sqrt[]{25} \\ |a|=5 \end{gathered}[/tex]The magnitude of b is:
[tex]\begin{gathered} |b|=\sqrt[]{7^2+1^2} \\ |b|=\sqrt[]{49+1} \\ |b|=\sqrt[]{50} \\ |b|=5\sqrt[]{2} \end{gathered}[/tex]Substituting the values of a.b, |a|, and |b| into the formula for the acute angle.
[tex]\begin{gathered} \theta=\cos ^{-1}\frac{a.b}{|a\Vert b|} \\ \theta=\cos ^{-1}\frac{25}{5\times5\sqrt[]{2}} \\ \theta=\cos ^{-1}\frac{25}{25\sqrt[]{2}} \\ \theta=\cos ^{-1}\frac{1}{\sqrt[]{2}} \\ \theta=45^0 \end{gathered}[/tex]Therefore, the acute angle lies between the vectors a=3i+4j and b=7i+j is 45°
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.