Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Givens.
• The mass of the ballon is 2.30 kg.
,• The height is 35.65 m.
First, find the final velocity when the balloon is at the bottom. Use a formula that relates height, initial speed, final speed, and gravity.
[tex]v^2_f=v^2_0+2gh[/tex]Where
• v_0 = 0 because the balloon starts from rest.
,• Gravity is g = 9.8 m/s^2.
,• h = 35.65 m.
Use all these magnitudes to find the final velocity v_f
[tex]\begin{gathered} v^2_f=0^2+2(9.8\cdot\frac{m}{s^2})(35.65m) \\ v^2_f=698.74m^2 \\ v_f=\sqrt[]{698.74m^2} \\ v_f\approx26.4(\frac{m}{s}) \end{gathered}[/tex]Once we have the velocity at the bottom, find the kinetic energy using its formula.
[tex]K=\frac{1}{2}mv^2[/tex]Where m = 2.30 kg, and v = 26.4m.s.
[tex]\begin{gathered} K=\frac{1}{2}\cdot(2.30\operatorname{kg})\cdot(26.4(\frac{m}{s}))^2 \\ K=1.15\cdot696.96J \\ K=801.5J \end{gathered}[/tex]Therefore, the kinetic energy at the bottom is 801.5 J.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.