Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Point C is midpoint of segment AB for A (1, -2) and B (7,2). What is the length of segment AC? Round to the nearest tenth.

Sagot :

To find the point C, we need to use the formula for the midpoint:

[tex](\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Then the point C is:

[tex]C=(\frac{7+1}{2},\frac{2+(-2)}{2})=(\frac{8}{2},\frac{0}{2})=(4,0)[/tex]

therefore, the point C is (4,0).

Now that we find the point C, we need to use the formula:

[tex]d(P,Q)=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

to find the length of the segment AC:

[tex]\begin{gathered} d(A,C)=\sqrt[]{(4-1)^2+(0-(-2))^2} \\ =\sqrt[]{(3)^2+(2)^2} \\ =\sqrt[]{9+4} \\ =\sqrt[]{13} \\ =3.6 \end{gathered}[/tex]

Therefore, the length of the segment AC is 13.