Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Givens.
• Weight = 7,656 N.
,• Initial speed = 43.13 km/h.
,• Time = 9.38 seconds.
,• Final speed = 0 km/h. (The car stops)
First, find the acceleration involved.
[tex]\begin{gathered} v_f=v_0+at \\ a=\frac{v_f-v_0}{t} \\ a=\frac{0-43.13\cdot\frac{km}{h}}{9.38\sec } \end{gathered}[/tex]But, we need to transform the initial speed to meters per second.
[tex]43.13\cdot\frac{km}{h}\cdot\frac{1000m}{1\operatorname{km}}\cdot\frac{1h}{3600\sec}=11.98\cdot\frac{m}{s}[/tex]Now we can proceed to find the acceleration.
[tex]\begin{gathered} a=\frac{-11.98\cdot\frac{m}{s}}{9.38s} \\ a=-1.28\cdot\frac{m}{s^2} \end{gathered}[/tex]Once you have the acceleration. Find the mass of the car using the weight formula.
[tex]\begin{gathered} W=mg \\ 7,656N=m\cdot9.8\cdot\frac{m}{s^2} \\ m=\frac{7,656N}{9.8\cdot\frac{m}{s^2}} \\ m=781.22\operatorname{kg} \end{gathered}[/tex]Then, use Newton's Second Law to find the needed force to stop.
[tex]\begin{gathered} F=ma \\ F=781.22\operatorname{kg}\cdot(-1.28\cdot\frac{m}{s^2}) \\ F=-999.96N \end{gathered}[/tex]Therefore, the magnitude of the force needed to stop the car is 999.96 Newtons.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.