Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer
38.8 mL
Explanation
Given:
Molarity of KOH, Cb = 0.623 M
Volume of H2SO4, Va = 23.5 mL = 0.0235 L
Molarity of H2SO4, Ca = 0.514 M
What to find:
The volume of KOH required to neutralize the acid.
Step-by-step Solution:
Step 1: Balance the equation for the reaction.
The balanced equation for the reaction is:
[tex]H_2SO_4+2KOH\rightarrow K_2SO_4+2H_2O[/tex]Step 2: Calculate the volume of the base, KOH.
The volume of KOH can be determine using:
[tex]\frac{C_aV_a}{n_a}=\frac{C_bV_b}{n_b}[/tex]From the balanced equation, na = 1 and nb = 2. so putting the values of the given parameters into the above formula, we have:
[tex]\begin{gathered} \frac{0.514M\times0.0235L}{1}=\frac{0.623M\times V_b}{2} \\ \\ V_b\times0.3115M=0.012079M.L \\ \\ Divide\text{ }both\text{ }sides\text{ }by\text{ }0.3115M \\ \\ V_b=\frac{0.012079M.L}{0.3115M} \\ \\ V_b=0.0388\text{ }L \\ \\ The\text{ }volume\text{ }in\text{ }mL\text{ }is \\ V_b=0.0388\times1000mL=38.8\text{ }mL \end{gathered}[/tex]Therefore, the volume of 0.623 M KOH is required to neutralize 23.5 mL if a 0.514 M H2SO4 solution = 38.8 mL
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.