Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
You have that the triangle ACD is a reflection of triangle ABC arounf line AC. This means that line AD is a relfection of line AB, and line CD is a relflection of line BC.
If AD is reflection of AB, then AD has the same length as AB, hence:
AD = AB = 2.7
if CD is reflection of BC, then:
CD = BC = 3.2
Now, due to triangle ACD is reflection of ABC, angle ∠ACD (up right side) must be equal to ∠ABC (left down side), then:
∠ACD = ∠ABC = 64.3°
Furthermore, you can notice that angle ∠BAD is equal to angle ∠BCD. And the sum of all angles inside the figure must be equal to 360° (because it is a figure of four sides). Hence, you have:
∠BAD = ∠BCD
∠BAD + ∠BDC + 64.3° + 64.3° = 360°
∠BAD + ∠BAD + 64.3° + 64.3° = 360°
2∠BAD + 64.3° + 64.3° = 360°
2∠BAD + 128.6° = 360°
2∠BAD = 360° - 128.6°
2∠BAD = 231.4°
∠BAD = 231.4°/2
∠BAD = 115.7°
Hence, angle ∠BAD = ∠BCD is equal to 115.7°
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.