At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Solution
- The formula for finding the variance of the sample dataset is given below:
[tex]\begin{gathered} \sum ^n_{i=1}\frac{(x_i-\bar{x})^2}{n-1} \\ \\ \text{where,} \\ \bar{x}=\text{The mean of the sample} \\ x_i=\text{ The individual data points in the dataset} \\ n=\text{The number of data points in the sample} \end{gathered}[/tex]- The data points have been given to be 12, 14, 19, 11, 8, 21, and 13.
- The formula for finding the Mean is
[tex]\begin{gathered} \sum ^n_{i=1}\frac{x_i}{n} \\ \text{where,} \\ x_i=\text{The individual data point} \\ n=\text{The number of data points in the sample} \end{gathered}[/tex]- Thus, we can simply apply the formula given above to solve the question. We shall follow these steps to solve this question:
1. Find the Mean.
2. Calculate the Variance
1. Find the Mean
[tex]\begin{gathered} \bar{x}=\frac{12+14+19+11+8+21+13}{7} \\ \\ \bar{x}=14 \end{gathered}[/tex]2. Calculate the Variance:
[tex]\begin{gathered} s^2=\sum ^n_{i=1}\frac{(x_i-\bar{x})^2}{n-1} \\ \\ =\frac{(12-14)^2+(14-14)^2+(19-14)^2+(11-14)^2+(8-14)^2+(21-14)^2+(13-14)^2}{7-1} \\ \\ =\frac{(-2)^2+0^2+5^2+(-3)^2+(-6)^2+7^2+(-1)^2}{6} \\ \\ =\frac{4+0+25+9+36+49+1}{6}=\frac{124}{6} \\ \\ s^2=20\frac{4}{6}=20.666\ldots\approx20.7\text{ (To the nearest tenth)} \end{gathered}[/tex]Final Answer
The value of the variance is
[tex]s^2=20.7[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.