Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Which of the following vectors has a magnitude of square root of 65 and a direction of θ = 240.255°?

Which Of The Following Vectors Has A Magnitude Of Square Root Of 65 And A Direction Of Θ 240255 class=

Sagot :

[tex]D)u=\mleft<-4,-7\mright>_{}[/tex]

1) We can find the magnitude of a vector(a.k.a. the norm) of a vector and the direction, by making use of the following formulas:

[tex]\begin{gathered} \mleft\|v\mright\|=\sqrt[]{a^2+b^2} \\ \tan (\theta)=\frac{b}{a} \end{gathered}[/tex]

2) In this question, the magnitude and the direction of that vector have been given to us. So, let's do the other way around to identify which one has this magnitude and direction.

[tex]\begin{gathered} \mleft\|u\mright\|=\sqrt[]{(-4)^2+(-7)^2}=\sqrt[]{16+49}=\sqrt[]{65} \\ \tan (\theta)=\frac{-4}{-7} \\ (\theta)=\tan ^{-1}(\frac{-4}{-7}) \\ D=\tan ^{-1}(\frac{-4}{-7})-180 \\ D=-119.74+360 \\ D=240.2 \end{gathered}[/tex]

Note that since we want a positive value, we need to add 360 degrees.