Jsnow
Answered

Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

I have to use elimination
-6x-6y=6
12x+12y=-12


Sagot :

[tex]\left\{\begin{array}{ccc}-6x-6y=6&|divide\ both\ sides\ by\ 6\\12x+12y=-12&|divide\ both\ sides\ by\ 12\end{array}\right\\\underline{+\left\{\begin{array}{ccc}-x-y=1\\x+y=-1\end{array}\right}\ \ \ |add\ both\ sides\ of\ the\ equations\\.\ \ \ \ \ \ \ \ 0=0\leftarrow TRUE\\\\therefore\\\\ infinitely\ many\ solutions\Rightarrow \left\{\begin{array}{ccc}y=-x-1\\x\in\mathbb{R}\end{array}\right[/tex]
-6x-6y=6
12x+12x=-12

multiply first equaltion by 2
-12x-12y=12
add to second equation
12x-12x+12y-12y=12-12
0=0
this means that they are the same equation and you really have one equation, but modified

an easy way to find the solution is to make one side equal to one of the placeholders exg y=x+930

12x+12y=-12
divide both sdides by 12
x+y=-1
subtrac x from both sdies
y=-x-1
subsitute values for x and get values for y exg
if x=1 then y=-2
if x=-1 then y=0
if x=0 then y=-1