At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Part I - First synthetic division
You need to use synthetic division to come up with an expression for a and b:
(x + 2) is a factor, and the remainder is 7, so we can draw a synthetic division table...
coefficients = 1 for X^3; A for X^2; B for X^1; and 3
-2 | 1 A B 3
-2 -2(A-2) 4(A-2)-2B
1 (A-2) -2(A-2)+B 4(A-2)-2B + 3
Remainder = 7
So...
4(A-2)-2B + 3 = 7
4 * (A - 2) - 2B + 3 = 7
4A - 8 - 2B = 4
4A - 2B = 12
2A - B = 6
Proved
-------------------------------------------------------------------------------------------------------------------
Part II - Second Synthetic Division
We draw another synthetic division table, this time with (x - 1), so the number on the left hand side will be +1
1 | 1 A B 3
1 (A+1) A+B+1
1 (A+1) A+B+1 A+B+4
Remainder = 4
So...
A + B + 4 = 4
A + B = 0
A = -B
-------------------------------------------------------------------------------------------------------------------
Part III - Solving for A and B with our two simultaneous equations
We know that A = -B and we also know that 2A - B = 6
Since we know that A is equal to -B We can substitute in A for -B, to get:
2A - B = 6
Therefore...
2A + A = 6
3A = 6
A = 2
Again, as we know that A = -B, and as we have found that A = 2, we can see:
A = -B
Therefore...
2 = -B
B = -2
So our final answer is A = 2, B = -2
Hopefully this answer is more useful than the last one, and isn't so confusing!
You need to use synthetic division to come up with an expression for a and b:
(x + 2) is a factor, and the remainder is 7, so we can draw a synthetic division table...
coefficients = 1 for X^3; A for X^2; B for X^1; and 3
-2 | 1 A B 3
-2 -2(A-2) 4(A-2)-2B
1 (A-2) -2(A-2)+B 4(A-2)-2B + 3
Remainder = 7
So...
4(A-2)-2B + 3 = 7
4 * (A - 2) - 2B + 3 = 7
4A - 8 - 2B = 4
4A - 2B = 12
2A - B = 6
Proved
-------------------------------------------------------------------------------------------------------------------
Part II - Second Synthetic Division
We draw another synthetic division table, this time with (x - 1), so the number on the left hand side will be +1
1 | 1 A B 3
1 (A+1) A+B+1
1 (A+1) A+B+1 A+B+4
Remainder = 4
So...
A + B + 4 = 4
A + B = 0
A = -B
-------------------------------------------------------------------------------------------------------------------
Part III - Solving for A and B with our two simultaneous equations
We know that A = -B and we also know that 2A - B = 6
Since we know that A is equal to -B We can substitute in A for -B, to get:
2A - B = 6
Therefore...
2A + A = 6
3A = 6
A = 2
Again, as we know that A = -B, and as we have found that A = 2, we can see:
A = -B
Therefore...
2 = -B
B = -2
So our final answer is A = 2, B = -2
Hopefully this answer is more useful than the last one, and isn't so confusing!
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.