Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

$800 is deposited in an account that pays 9% compounded semi-annually. Find the balance after 4 years.

Sagot :

The formula for compound interest is the following:

A=P(1+r/n)^nt
A=accumulated amount (what we're looking for)
P=Principal amount (initial amount). $800 in this case
r=rate. 0.09 in this case which we get from converting 9% to decimal by dividing by a 100.
n=number of times interest is compounded. In this case semi-annually which means 2
t=time. In this case 4 years
Let's calculate:
A=800(1+0.09/2)^(2*4)
A=800(1+0.045)^8
A=800(1.045)^8
A=800(1.42210061284)
A=1137.68049027
Let's round to the hundredth place (to represent cents) since the amount represents money.
Answer=The balance after 4 years will be $1,137.68

Answer:

Principal = $ 800

Time = 4 years

Rate of Interest = 9% compounded Semi Annually

          [tex]=\frac{9\pr}{2}[/tex]

Time = 4× 2=8 periods

As, we have to find balance after 4 years, so we will use the formula for amount in terms of Compound interest.

Amount(A)

      [tex]A=P[1+\frac{R}{100}]^n\\\\ A=800\times [1+\frac{9}{200}]^8\\\\ A=800 \times [\frac{209}{200}]^8\\\\ A=800 \times (1.045)^8\\\\ A=800 \times 1.422\\\\ A=1137.680[/tex]

Balance after 4 years = $ 1137.68

Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.