Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

I am a number less than 3,000. When you divide me by 32, my remainder is 30. When you divide me by 58, my remainder is 44. What number am I?

Sagot :

Taking x as the number to be found,
x=32a+30=58b+44 where a and b are the quotients you get on dividing x by 32 and 58.
Simplifying this equation you get 16a+15=29b+22
16a= (16+13)b+22-15 or 16a=16b+13b+7
16(a-b)=13b+7
Now I have to find a value for b where 13b+7 is divisible by 16. The least common multiple of these numbers can be found by going through the multiplication tables of 13 and 16 and 13x13+7=176, while 16x11 is also 176.
Now that the value of b is found to be 13, we can substitute it in our first equation, x=58b+44=58x13+44=798.
Now find the least common multiple of 58 and 32
LCM (n,m)=nm/GCD (n,m) where GCD is the greatest common divisor of n and m
LCM (58, 32)=58x32/2 as 2 is the GCD of 58 and 32
LCM (58, 32)= 1856/2= 928
Add this LCM to the previous answer, ie, 798 to get the next answer in the series. 798+928=1726
Add the LCM again to the last answer to get the final answer, that is less than 3000=1726+928=2654