Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
If 17% of men are bald, then the probability that at most 140 in a random sample of 900 men are bald, is 0.1335.
In the given question, if 17% of men are bald, then we have to find the probability that at most 140 in a random sample of 900 men are bald.
As given that; 17% of men are bald.
So,p=0.17
Let X=Number of men that are bald
Sample size, n=900
Here X follows binomial distribution with parameters n= 900 and p =0.17
Since np≥5 and n(1-p)≥5, We can use normal approximation to the binomial with continuity correction.
So,Binomial can be approximated to normal with;
mean, μ=np
μ = 900*0.17
μ = 153
Standard deviation, σ = √np(1-p)
σ = √900*0.17*(1-0.17)
σ = √153*0.83
σ = √126.99
σ = 11.269
So, X→Normal (μ = 153, σ = 11.269)
Then, X= (X-μ)/σ
X=(X-153)/11.269
We need to find the probability that at most 140 in a random sample of 900 men are bald i.e. we need to find P(X≤140)
P(X≤140) =P(X<140+0.5) [using continuity correction factor]
P(X≤140) =P(X<140.5)
P(X≤140) =P(z<(X-153)/11.269)
P(X≤140) =P(z<(140.5-153)/11.269)
P(X≤140) =P(Z<-1.11) [z score rounded to 2 decimal places]
P(X≤140) =0.1335
Hence, if 17% of men are bald, then the probability that at most 140 in a random sample of 900 men are bald, is 0.1335.
To learn more about probability link is here
brainly.com/question/29657446
#SPJ4
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.