At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

100 Points + Brainliest if correct and well explained:
A recent survey at a local recreation center reported that 79% of the participants played pickleball. Of those who play pickleball, 6% are female. Of those who do not play pickleball, 21% are male. Based on this information, construct a two-way relative frequency table. Round all values to the nearest whole percentage.


Male Female Total
Plays pickleball 77% 2% 79%
Does not play pickleball 6% 15% 21%
Column Totals 83% 17% 100%

Male Female Total
Plays pickleball 74% 5% 79%
Does not play pickleball 4% 17% 21%
Column Totals 78% 22% 100%

Male Female Total
Plays pickleball 75% 4% 79%
Does not play pickleball 4% 17% 21%
Column Totals 79% 21% 100%

Male Female Total
Plays pickleball 76% 3% 79%
Does not play pickleball 4% 17% 21%
Column Totals 80% 20% 100%


Sagot :

Answer:

[tex]\begin{array}{|l|c|c|c|}\cline{1-4} \vphantom{\dfrac12}& \sf Male & \sf Female & \sf Total\\\cline{1-4} \vphantom{\dfrac12}\sf Plays \; pickleball & 74\%& 5\% & 79\%\\\cline{1-4} \vphantom{\dfrac12}\sf Does\;not\;play\; pickleball &4\% & 17\%& 21\%\\\cline{1-4} \vphantom{\dfrac12}\sf Column\;Totals&78\%&22\%& 100\%\\\cline{1-4}\end{array}[/tex]

Step-by-step explanation:

Create a blank frequency table:

[tex]\begin{array}{|l|c|c|c|}\cline{1-4} \vphantom{\dfrac12}& \sf Male & \sf Female & \sf Total\\\cline{1-4} \vphantom{\dfrac12}\sf Plays \; pickleball & & &\\\cline{1-4} \vphantom{\dfrac12}\sf Does\;not\;play\; pickleball & & &\\\cline{1-4} \vphantom{\dfrac12}\sf Column\;Totals&&& 100\%\\\cline{1-4}\end{array}[/tex]

If 79% of the participants played pickleball, then 21% of the participants do not play pickleball.

Input these percentages into the table:

[tex]\begin{array}{|l|c|c|c|}\cline{1-4} \vphantom{\dfrac12}& \sf Male & \sf Female & \sf Total\\\cline{1-4} \vphantom{\dfrac12}\sf Plays \; pickleball & & & 79\%\\\cline{1-4} \vphantom{\dfrac12}\sf Does\;not\;play\; pickleball & & & 21\%\\\cline{1-4} \vphantom{\dfrac12}\sf Column\;Totals&&& 100\%\\\cline{1-4}\end{array}[/tex]

Of those who play pickleball, 6% are female.

Therefore, of those who play pickleball, 94% must be male.

The total percentage of those who play pickleball is 79%, so find 6% and 94% of 79%:

[tex]\begin{aligned}\textsf{Plays pickleball (female)}&=6\% \; \sf of \; 79\%\\&=0.06 \times 0.79\\&=0.0474\\&=5\%\; \sf (nearest\;percent)\end{aligned}[/tex]

[tex]\begin{aligned}\textsf{Plays pickleball (male)}&=94\% \; \sf of \; 79\%\\&=0.94 \times 0.79\\&=0.7426\\&=74\%\; \sf (nearest\;percent)\end{aligned}[/tex]

Input the found percentages into the table:

[tex]\begin{array}{|l|c|c|c|}\cline{1-4} \vphantom{\dfrac12}& \sf Male & \sf Female & \sf Total\\\cline{1-4} \vphantom{\dfrac12}\sf Plays \; pickleball & 74\%& 5\% & 79\%\\\cline{1-4} \vphantom{\dfrac12}\sf Does\;not\;play\; pickleball & & & 21\%\\\cline{1-4} \vphantom{\dfrac12}\sf Column\;Totals&&& 100\%\\\cline{1-4}\end{array}[/tex]

Of those who do not play pickleball, 21% are male.

Therefore, of those who do not play pickleball, 79% must be female.

The total percentage of those who do not play pickleball is 21%, so find 21% and 79% of 21%:

[tex]\begin{aligned}\textsf{Does not play pickleball (male)}&=21\% \; \sf of \; 21\%\\&=0.21 \times 0.21 \\&=0.0441\\&=4\%\; \sf (nearest\;percent)\end{aligned}[/tex]

[tex]\begin{aligned}\textsf{Does not play pickleball (female)}&=79\% \; \sf of \; 21\%\\&=0.79 \times 0.21\\&=0.1659\\&=17\%\; \sf (nearest\;percent)\end{aligned}[/tex]

Input the found percentages into the table and calculate the column totals:

[tex]\begin{array}{|l|c|c|c|}\cline{1-4} \vphantom{\dfrac12}& \sf Male & \sf Female & \sf Total\\\cline{1-4} \vphantom{\dfrac12}\sf Plays \; pickleball & 74\%& 5\% & 79\%\\\cline{1-4} \vphantom{\dfrac12}\sf Does\;not\;play\; pickleball &4\% & 17\%& 21\%\\\cline{1-4} \vphantom{\dfrac12}\sf Column\;Totals&78\%&22\%& 100\%\\\cline{1-4}\end{array}[/tex]