At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
Approximately [tex]2.3\; {\rm m\cdot s^{-1}}[/tex] to the left.
Explanation:
When an object of mass [tex]m[/tex] travels at a velocity of [tex]v[/tex], the momentum [tex]p[/tex] of that object will be [tex]p = m\, v[/tex].
Denote motions to the right with a positive sign.
Before the collision:
- Velocity of the canoe was [tex](-10)\; {\rm m\cdot s^{-1}}[/tex] since the canoe was moving to the left (opposite to the positive direction.) Momentum of the canoe was [tex]p(\text{canoe, before}) = (16.0\; {\rm kg})\, (-10\; {\rm m\cdot s^{-1}}) = 160\; {\rm kg \cdot m\cdot s^{-1}}[/tex].
- Velocity of the raft was [tex]19.0\; {\rm m\cdot s^{-1}}[/tex] since the raft is moving to the right (towards positive direction.) Momentum of the raft was [tex]p(\text{raft, before}) = (19.0\; {\rm kg})\, (7.0\; {\rm m\cdot s^{-1}}) = 133\; {\rm kg \cdot m\cdot s^{-1}}[/tex].
After the collision:
- Velocity of the canoe becomes [tex]1\; {\rm m\cdot s^{-1}}[/tex] (to the right, towards the positive direction.) Momentum of the canoe becomes [tex]p = (16.0\; {\rm kg})\, (1\; {\rm m\cdot s^{-1}}) = 16.0\; {\rm kg \cdot m\cdot s^{-1}}[/tex].
- Velocity of the raft after the collision needs to be found.
Immediately after the collision, momentum [tex]p[/tex] of the canoe and the raft will be conserved. In other words:
[tex]\begin{aligned}& p(\text{canoe, before}) + p(\text{raft, before}) \\ =\; & p(\text{canoe, after}) + p(\text{raft, after})\end{aligned}[/tex].
Rearrange to find [tex]p(\text{raft, after})[/tex] (momentum of the raft immediately after the collision.)
[tex]\begin{aligned}& p(\text{raft, after}) \\ =\; & p(\text{canoe, before}) \\ & + p(\text{raft, before}) \\ & - p(\text{canoe, after}) \\ =\; & (-160\; {\rm kg \cdot m\cdot s^{-1}}) \\ &+ (133\; {\rm kg \cdot m\cdot s^{-1}}) \\ & - (16.0\; {\rm kg \cdot m\cdot s^{-1}}) \\ =\; & (-43)\; {\rm kg \cdot m\cdot s^{-1}} \end{aligned}[/tex].
(Momentum of the raft is negative since the raft is moving to the left, away from the positive direction.)
Divide the momentum of the raft by the mass of the raft to find the velocity of the raft:
[tex]\begin{aligned} \frac{(-43\; {\rm kg\cdot m\cdot s^{-1}})}{(19.0\; {\rm kg})} \approx (-2.3)\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.