Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
Approximately [tex]2.3\; {\rm m\cdot s^{-1}}[/tex] to the left.
Explanation:
When an object of mass [tex]m[/tex] travels at a velocity of [tex]v[/tex], the momentum [tex]p[/tex] of that object will be [tex]p = m\, v[/tex].
Denote motions to the right with a positive sign.
Before the collision:
- Velocity of the canoe was [tex](-10)\; {\rm m\cdot s^{-1}}[/tex] since the canoe was moving to the left (opposite to the positive direction.) Momentum of the canoe was [tex]p(\text{canoe, before}) = (16.0\; {\rm kg})\, (-10\; {\rm m\cdot s^{-1}}) = 160\; {\rm kg \cdot m\cdot s^{-1}}[/tex].
- Velocity of the raft was [tex]19.0\; {\rm m\cdot s^{-1}}[/tex] since the raft is moving to the right (towards positive direction.) Momentum of the raft was [tex]p(\text{raft, before}) = (19.0\; {\rm kg})\, (7.0\; {\rm m\cdot s^{-1}}) = 133\; {\rm kg \cdot m\cdot s^{-1}}[/tex].
After the collision:
- Velocity of the canoe becomes [tex]1\; {\rm m\cdot s^{-1}}[/tex] (to the right, towards the positive direction.) Momentum of the canoe becomes [tex]p = (16.0\; {\rm kg})\, (1\; {\rm m\cdot s^{-1}}) = 16.0\; {\rm kg \cdot m\cdot s^{-1}}[/tex].
- Velocity of the raft after the collision needs to be found.
Immediately after the collision, momentum [tex]p[/tex] of the canoe and the raft will be conserved. In other words:
[tex]\begin{aligned}& p(\text{canoe, before}) + p(\text{raft, before}) \\ =\; & p(\text{canoe, after}) + p(\text{raft, after})\end{aligned}[/tex].
Rearrange to find [tex]p(\text{raft, after})[/tex] (momentum of the raft immediately after the collision.)
[tex]\begin{aligned}& p(\text{raft, after}) \\ =\; & p(\text{canoe, before}) \\ & + p(\text{raft, before}) \\ & - p(\text{canoe, after}) \\ =\; & (-160\; {\rm kg \cdot m\cdot s^{-1}}) \\ &+ (133\; {\rm kg \cdot m\cdot s^{-1}}) \\ & - (16.0\; {\rm kg \cdot m\cdot s^{-1}}) \\ =\; & (-43)\; {\rm kg \cdot m\cdot s^{-1}} \end{aligned}[/tex].
(Momentum of the raft is negative since the raft is moving to the left, away from the positive direction.)
Divide the momentum of the raft by the mass of the raft to find the velocity of the raft:
[tex]\begin{aligned} \frac{(-43\; {\rm kg\cdot m\cdot s^{-1}})}{(19.0\; {\rm kg})} \approx (-2.3)\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.