Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The image by rotation of the triangle ABC with vertices A(x, y) = (8, - 9), B(x, y) = (5, - 4), C(x, y) = (7, - 1) is represented by vertices A'(x, y) = (- 9, - 8), B'(x, y) = (- 4, - 5) and C'(x, y) = (- 1, - 7). The transformation rule is R'(x, y) = (x · cos θ - y · sin θ, x · sin θ + y · cos θ).
How to find the transformation rule and image of a given figure
In this problem we have the case of triangle set on a Cartesian plane and that must be rotated 90° clockwise, the image can be found by using the following transformation rule:
R'(x, y) = (x · cos θ - y · sin θ, x · sin θ + y · cos θ)
Where:
x, y - Coordinates of the original point.
θ - Angle of rotation, in degrees.
If we know that A(x, y) = (8, - 9), B(x, y) = (5, - 4), C(x, y) = (7, - 1) and θ = - 90°, then the image of the triangle is:
A'(x, y) = (8 · cos (- 90°) - (- 9) · sin (- 90°), 8 · sin (- 90°) + (- 9) · cos (- 90°))
A'(x, y) = (- 9, - 8)
B'(x, y) = (5 · cos (- 90°) - (- 4) · sin (- 90°), 5 · sin (- 90°) + (- 4) · cos (- 90°))
B'(x, y) = (- 4, - 5)
C'(x, y) = (7 · cos (- 90°) - (- 1) · sin (- 90°), 7 · sin (- 90°) + (- 1) · cos (- 90°))
C'(x, y) = (- 1, - 7)
To learn more on transformation rules: https://brainly.com/question/21298384
#SPJ1
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.