Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Assume you have noted the following prices for books and the number of pages that each book contains.Book Pages (x) Price (y)A 500 $7.00B 700 7.50C 750 9.00D 590 6.50E 540 7.50F 650 7.00G 480 4.50a. Develop a least-squares estimated regression line.b. Compute the coefficient of determination and explain its meaning.c. Compute the correlation coefficient between the price and the number of pages. Test to see if x and y are related. Use ? = 0.10.

Sagot :

[tex]a) $y=0.00991 x+1.042$b) $r^2=0.7503^2=0.563$\\C) $r=\frac{7(30095)-(4210)(49)}{\sqrt{\left[7(2595100)-(4210)^2\right]\left[7(354)-(49)^2\right]}}=0.7503$[/tex]

x: 500, 700, 750, 590 , 540, 650, 480

y: 7.00, 7.50 , 9.00, 6.5, 7.50 , 7.0, 4.50

We want to create a linear model like this :

[tex]$y=m x+b$[/tex]

Where

[tex]$m=\frac{S_{x y}}{S_{x x}}$[/tex]

And:  

[tex]$\begin{aligned}& S_{x y}=\sum_{i=1}^n x_i y_i-\frac{\left(\sum_{i=1}^n x_i\right)\left(\sum_{i=1}^n y_i\right)}{n} \\& S_{x x}=\sum_{i=1}^n x_i^2-\frac{\left(\sum_{i=1}^n x_i\right)^2}{n}\end{aligned}$[/tex]

With these we can find the sums:  

[tex]$\begin{aligned}& S_{x x}=\sum_{i=1}^n x_i^2-\frac{\left(\sum_{i=1}^n x_i\right)^2}{n}=2595100-\frac{4210^2}{7}=63085.714 \\& S_{x y}=\sum_{i=1}^n x_i y_i-\frac{\left(\sum_{i=1}^n x_i\right)\left(\sum_{i=1}^n y_i\right) n}{=} 30095-\frac{4210 * 49}{7}=625\end{aligned}$[/tex]

And the slope would be:  

[tex]m=\frac{625}{63085.714}=0.00991[/tex]

Now we can find the means for x and y like this:

[tex]$\begin{aligned}& \bar{x}=\frac{\sum x_i}{n}=\frac{4210}{7}=601.429 \\& \bar{y}=\frac{\sum y_i}{n}=\frac{49}{7}=7\end{aligned}$[/tex]

And we can find the intercept using this:

[tex]$b=\bar{y}-m \bar{x}=7-(0.00991 * 601.429)=1.042$[/tex]

And the line would be:

[tex]$y=0.00991 x+1.042$[/tex]

Part b

The correlation coefficient is given by:

[tex]r=\frac{n\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)}{\sqrt{\left[n \sum x^2-\left(\sum x\right)^2\right]\left[n \sum y^2-\left(\sum y\right)^2\right]}}[/tex]

For our case we have this:

[tex]$\begin{aligned}& \mathrm{n}=7 \sum x=4210, \sum y=49, \sum x y=30095, \sum x^2=2595100, \sum y^2=354 \\& r=\frac{7(30095)-(4210)(49)}{\sqrt{\left[7(2595100)-(4210)^2\right]\left[7(354)-(49)^2\right]}}=0.7503\end{aligned}$[/tex]

The determination coefficient is given by:

[tex]$r^2=0.7503^2=0.563$[/tex]

Part c

[tex]r=\frac{7(30095)-(4210)(49)}{\sqrt{\left[7(2595100)-(4210)^2\right]\left[7(354)-(49)^2\right]}}=0.7503[/tex]

Learn more about regression line to visit this link

https://brainly.com/question/7656407

#SPJ4

Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.