Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
The solution of Neumann problem, ∇²u= 0 if r < R , Uₙ (R,θ) = f(θ) is u(r,θ) = a'₀+ rⁿ(a'ₙ cosnθ + b'ₙ sinnθ) with boundary conditions uᵣ (r,θ) = ∑n R⁽ⁿ⁻¹⁾(Aₙ cosnθ + Bₙ sinnθ) = f(θ) and
Aₙ=∫(f(θ)cosnθ /π nR⁽ⁿ⁻¹⁾)dθ, where θ∈[-π, π]
Bₙ=∫(f(θ)sinnθ /π nR⁽ⁿ⁻¹⁾)dθ, where θ∈[-π, π]
Given that
The solution of Numann problem
∇²u= 0 if r < R , Uₙ (R,θ) = f(θ)
Use polar co-ordinates (r,θ)
uᵣᵣ + 1/r uᵣ+ 1/uᵣ (uθθ) = 0 ,0 < r< R,
0 <θ <2π and ∂u/∂r(R,θ) = f(θ) is directional derivative
r²d²u/dr² + rdu/dr + d²u/dθ² = 0
Let , r = ε⁻ᵗ , u(r(t),θ)
uₜ = uᵣ(rₜ) = - e⁻ᵗ uᵣ
uₜₜ =( - e⁻ᵗ uᵣ )ₜ = ε⁻ᵗuᵣ + e⁻²ᵗ uᵣᵣ
= r uᵣ+ r²uᵣᵣ
Thus we have, uₜₜ + uθθ = 0
Let u(t,θ) = X(t)Y(θ)
Which gives X''(t)Y(θ) + X(t)Y"(θ) = 0
X"(t)/X(t) = - Y"(θ)/Y(θ) = λ
From Y"(θ) + λ Y(θ) = 0
We get, Yₙ(θ) = aₙ cosnθ + bₙ sinnθ
λ= n² , n =0, 1, ...
With these values of λn we solve,
X"(t) - n² X(t) = 0
If n = 0 , X₀(t) = c₀t + d₀
X₀(r) = -c₀log (r) + d₀
If n not equal to 0 then
Xₙ (t) = cₙeⁿᵗ + dₙ e⁻ⁿᵗ
Xₙ(r) = cₙ(r)⁻ⁿ + dₙ (r)ⁿ
We have u₀(r, θ) = X₀(r)Y₀(θ)
= a₀ ( - c₀(log r) + d₀)
uₙ(r,θ) = Xₙ(r) Yₙ(θ)
= (cₙ r⁻ⁿ+ dₙrⁿ)(aₙ cosnθ + bₙ sinnθ)
But u must be positive at t =0
So, cₙ = 0 ; n = 0,1,2....
u₀ (r,θ) = a₀ d₀
uₙ(r,θ) = dₙ rⁿ( aₙ connθ + bₙ sinnθ)
By superposition , we can write as
u(r,θ) = a'₀+ rⁿ(a'ₙ cosnθ + b'ₙ sinnθ)
Boundary conditions gives
uᵣ (r,θ)=∑n R⁽ⁿ⁻¹⁾(Aₙ cosnθ + Bₙ sinnθ) = f(θ)
the coefficients aₙ , bₙ for n ≥ 1 are determined are Fourier series for f(θ)
but a₀ is not determined from f(θ) therefore , it may take arbitrary value. By using Fourier series,
Aₙ= Integration of(f(θ)cosnθ dθ/π n R⁽ⁿ⁻¹⁾) where θ∈[-π, π]
Bₙ= Integration of (f(θ) sinnθ dθ/π nR⁽ⁿ⁻¹⁾) where θ∈[-π, π]
To learn more about Directional derivative, refer:
https://brainly.com/question/12873145
#SPJ4
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.