Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
The solution of Neumann problem, ∇²u= 0 if r < R , Uₙ (R,θ) = f(θ) is u(r,θ) = a'₀+ rⁿ(a'ₙ cosnθ + b'ₙ sinnθ) with boundary conditions uᵣ (r,θ) = ∑n R⁽ⁿ⁻¹⁾(Aₙ cosnθ + Bₙ sinnθ) = f(θ) and
Aₙ=∫(f(θ)cosnθ /π nR⁽ⁿ⁻¹⁾)dθ, where θ∈[-π, π]
Bₙ=∫(f(θ)sinnθ /π nR⁽ⁿ⁻¹⁾)dθ, where θ∈[-π, π]
Given that
The solution of Numann problem
∇²u= 0 if r < R , Uₙ (R,θ) = f(θ)
Use polar co-ordinates (r,θ)
uᵣᵣ + 1/r uᵣ+ 1/uᵣ (uθθ) = 0 ,0 < r< R,
0 <θ <2π and ∂u/∂r(R,θ) = f(θ) is directional derivative
r²d²u/dr² + rdu/dr + d²u/dθ² = 0
Let , r = ε⁻ᵗ , u(r(t),θ)
uₜ = uᵣ(rₜ) = - e⁻ᵗ uᵣ
uₜₜ =( - e⁻ᵗ uᵣ )ₜ = ε⁻ᵗuᵣ + e⁻²ᵗ uᵣᵣ
= r uᵣ+ r²uᵣᵣ
Thus we have, uₜₜ + uθθ = 0
Let u(t,θ) = X(t)Y(θ)
Which gives X''(t)Y(θ) + X(t)Y"(θ) = 0
X"(t)/X(t) = - Y"(θ)/Y(θ) = λ
From Y"(θ) + λ Y(θ) = 0
We get, Yₙ(θ) = aₙ cosnθ + bₙ sinnθ
λ= n² , n =0, 1, ...
With these values of λn we solve,
X"(t) - n² X(t) = 0
If n = 0 , X₀(t) = c₀t + d₀
X₀(r) = -c₀log (r) + d₀
If n not equal to 0 then
Xₙ (t) = cₙeⁿᵗ + dₙ e⁻ⁿᵗ
Xₙ(r) = cₙ(r)⁻ⁿ + dₙ (r)ⁿ
We have u₀(r, θ) = X₀(r)Y₀(θ)
= a₀ ( - c₀(log r) + d₀)
uₙ(r,θ) = Xₙ(r) Yₙ(θ)
= (cₙ r⁻ⁿ+ dₙrⁿ)(aₙ cosnθ + bₙ sinnθ)
But u must be positive at t =0
So, cₙ = 0 ; n = 0,1,2....
u₀ (r,θ) = a₀ d₀
uₙ(r,θ) = dₙ rⁿ( aₙ connθ + bₙ sinnθ)
By superposition , we can write as
u(r,θ) = a'₀+ rⁿ(a'ₙ cosnθ + b'ₙ sinnθ)
Boundary conditions gives
uᵣ (r,θ)=∑n R⁽ⁿ⁻¹⁾(Aₙ cosnθ + Bₙ sinnθ) = f(θ)
the coefficients aₙ , bₙ for n ≥ 1 are determined are Fourier series for f(θ)
but a₀ is not determined from f(θ) therefore , it may take arbitrary value. By using Fourier series,
Aₙ= Integration of(f(θ)cosnθ dθ/π n R⁽ⁿ⁻¹⁾) where θ∈[-π, π]
Bₙ= Integration of (f(θ) sinnθ dθ/π nR⁽ⁿ⁻¹⁾) where θ∈[-π, π]
To learn more about Directional derivative, refer:
https://brainly.com/question/12873145
#SPJ4
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.