At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
The solution of Neumann problem, ∇²u= 0 if r < R , Uₙ (R,θ) = f(θ) is u(r,θ) = a'₀+ rⁿ(a'ₙ cosnθ + b'ₙ sinnθ) with boundary conditions uᵣ (r,θ) = ∑n R⁽ⁿ⁻¹⁾(Aₙ cosnθ + Bₙ sinnθ) = f(θ) and
Aₙ=∫(f(θ)cosnθ /π nR⁽ⁿ⁻¹⁾)dθ, where θ∈[-π, π]
Bₙ=∫(f(θ)sinnθ /π nR⁽ⁿ⁻¹⁾)dθ, where θ∈[-π, π]
Given that
The solution of Numann problem
∇²u= 0 if r < R , Uₙ (R,θ) = f(θ)
Use polar co-ordinates (r,θ)
uᵣᵣ + 1/r uᵣ+ 1/uᵣ (uθθ) = 0 ,0 < r< R,
0 <θ <2π and ∂u/∂r(R,θ) = f(θ) is directional derivative
r²d²u/dr² + rdu/dr + d²u/dθ² = 0
Let , r = ε⁻ᵗ , u(r(t),θ)
uₜ = uᵣ(rₜ) = - e⁻ᵗ uᵣ
uₜₜ =( - e⁻ᵗ uᵣ )ₜ = ε⁻ᵗuᵣ + e⁻²ᵗ uᵣᵣ
= r uᵣ+ r²uᵣᵣ
Thus we have, uₜₜ + uθθ = 0
Let u(t,θ) = X(t)Y(θ)
Which gives X''(t)Y(θ) + X(t)Y"(θ) = 0
X"(t)/X(t) = - Y"(θ)/Y(θ) = λ
From Y"(θ) + λ Y(θ) = 0
We get, Yₙ(θ) = aₙ cosnθ + bₙ sinnθ
λ= n² , n =0, 1, ...
With these values of λn we solve,
X"(t) - n² X(t) = 0
If n = 0 , X₀(t) = c₀t + d₀
X₀(r) = -c₀log (r) + d₀
If n not equal to 0 then
Xₙ (t) = cₙeⁿᵗ + dₙ e⁻ⁿᵗ
Xₙ(r) = cₙ(r)⁻ⁿ + dₙ (r)ⁿ
We have u₀(r, θ) = X₀(r)Y₀(θ)
= a₀ ( - c₀(log r) + d₀)
uₙ(r,θ) = Xₙ(r) Yₙ(θ)
= (cₙ r⁻ⁿ+ dₙrⁿ)(aₙ cosnθ + bₙ sinnθ)
But u must be positive at t =0
So, cₙ = 0 ; n = 0,1,2....
u₀ (r,θ) = a₀ d₀
uₙ(r,θ) = dₙ rⁿ( aₙ connθ + bₙ sinnθ)
By superposition , we can write as
u(r,θ) = a'₀+ rⁿ(a'ₙ cosnθ + b'ₙ sinnθ)
Boundary conditions gives
uᵣ (r,θ)=∑n R⁽ⁿ⁻¹⁾(Aₙ cosnθ + Bₙ sinnθ) = f(θ)
the coefficients aₙ , bₙ for n ≥ 1 are determined are Fourier series for f(θ)
but a₀ is not determined from f(θ) therefore , it may take arbitrary value. By using Fourier series,
Aₙ= Integration of(f(θ)cosnθ dθ/π n R⁽ⁿ⁻¹⁾) where θ∈[-π, π]
Bₙ= Integration of (f(θ) sinnθ dθ/π nR⁽ⁿ⁻¹⁾) where θ∈[-π, π]
To learn more about Directional derivative, refer:
https://brainly.com/question/12873145
#SPJ4
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.