Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Its is true that C ⊆ D means Every element of C is present in D
According to he question,
Let C = {n ∈ Z | n = 6r – 5 for some integer r}
D = {m ∈ Z | m = 3s + 1 for some integer s}
We have to prove : C ⊆ D
Proof : Let n ∈ C
Then there exists an integer r such that:
n = 6r - 5
Since -5 = -6 + 1
=> n = 6r - 6 + 1
Using distributive property,
=> n = 3(2r - 2) +1
Since , 2 and r are the integers , their product 2r is also an integer and the difference 2r - 2 is also an integer then
Let s = 2r - 2
Then, m = 3r + 1 with r some integer and thus m ∈ D
Since , every element of C is also an element of D
Hence , C ⊆ D proved !
Similarly, you have to prove D ⊆ C
To know more about integers here
https://brainly.com/question/15276410
#SPJ4
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.