Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
1. d = 40; 2 irrational
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{7.6 cm}\underline{Discriminant}\\\\$b^2-4ac$ \quad when $ax^2+bx+c=0$\\\\when $b^2-4ac > 0 \implies$ two real solutions.\\when $b^2-4ac=0 \implies$ one real solution.\\when $b^2-4ac < 0 \implies$ no real solutions.\\\end{minipage}}[/tex]
Given quadratic equation:
[tex]3x^2+4x-2=0[/tex]
Therefore:
- a = 3
- b = 4
- c = -2
Substitute the values of a, b and c into the discriminant formula:
[tex]\begin{aligned}\implies b^2-4ac&=(4)^2-4(3)(-2)\\&=16-12(-2)\\&=16+24\\&=40\end{aligned}[/tex]
Therefore, as d = 40 and 40 > 0:
[tex]\implies b^2 - 4ac > 0 \implies \text{two real solutions}.[/tex]
To determine if the solutions are irrational or rational, simply square root the discriminant.
[tex]\implies \sqrt{d}=\sqrt{40}=2 \sqrt{10}[/tex]
As the discriminant is not a perfect square, then its square root is irrational and so the solutions of the quadratic equation are irrational.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.