Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The Maclaurin series expansion of f(x) = 1/(1-x)² is
1 + 2x + 6x² + 24x³ +......
The general expression for the Maclaurin series is given by the formula:
f(x) = f(0) + xf'(0) + x²f''(0) + ..... + xⁿf⁽ⁿ⁾(0)+...
= ∑ f⁽ⁿ⁾ (0)xⁿ/n!
n= 0 to infinity
Specifying the convergence region completes the Maclaurin series formulation. Detailed five steps for determining the Maclaurin series of
f(x) = 1/(1-x)²
Step 1 : Find Derivatives for f(x)
f(x) = 1/(1-x)²
f'(x) = -2(1-x)⁽⁻²⁻¹⁾ (-1) = 2/(1-x)³
The second derivative of f(x) is the derivative of f''(x) :
f"(x) = 2(-3)(1-x)⁽⁻³⁻¹⁾(-1) = 6/(1-x)⁴
Differentiating again, f"'(x) = 6(-4)(1-x)⁽⁻⁴⁻¹⁾(-1)
= 24/(1-x)⁵
Thus, the nᵗʰ derivative is ,
f⁽ⁿ⁾(x) = (n+1)!/(1-x)⁽ⁿ⁻¹⁾
Step 2: Evaluate These Derivatives and f(x) at x=0 let x = 0 , f(0) = 1
f'(0) = 2 , f"(0) = 6 , ....... , f⁽ⁿ⁾(0) = (n+1)!
Step 3 : Now, the Sum of Products :
f(x) = f(0) + xf'(0) + x²f''(0) + ..... + xⁿf⁽ⁿ⁾(0)+...
xf'(0) = 2x
x²f"(0) = 6x²
x³f"'(0) = 24 x³
----------------------------
xⁿf⁽ⁿ⁾(0)= (n+1)!
Thus, the Maclaurin series for ln(1 + x) is this:
f(x) = (1−x)⁻² = 1 + 2x + 6x² + 24x³ +......
To learn more about Maclaurin series , refer:
https://brainly.com/question/24188694
#SPJ4
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.