Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Using the z-distribution, it is found that the 95% confidence interval for the mean lifetime of this type of drill, in holes drilled, is (10.4, 13.94).
We are given the standard deviation for the population, hence, the z-distribution is used. The parameters for the interval is:
Sample mean of [tex]x = 12.7[/tex]
Population standard deviation of [tex]\sigma = 6.37[/tex]
Sample size of .n = 50
The margin of error is:
[tex]M = z \frac{\sigma }{\sqrt{n} }[/tex]
In which z is the critical value.
We have to find the critical value, which is z with a p-value of [tex]\frac{1+\alpha }{2}[/tex] , in which [tex]\alpha[/tex] is the confidence level.
In this problem, , thus, z with a p-value of , which means that it is z = 1.96.
Then:
[tex]M= 1.96\frac{6.37}{\sqrt{50} } = 1.77[/tex]
The confidence interval is the sample mean plus/minutes the margin of error, hence:
x- M = 12.17 - 1.77 =10.4
x+M = 12.17 + 1.77 = 13.94
The 95% confidence interval for the mean lifetime of this type of drill, in holes drilled, is (10.4, 13.94).
Learn more about confidence level at :
brainly.com/question/22596713
#SPJ4
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.