At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The value of the standard deviation does not change and remains the same.
Given, a retired statistic professor has recorded final exam results for decades. the mean final exam score for the population of a student is 82.4 with a standard deviation of 6.5.
The mean μ = 82.4
The standard deviation σ = √[ ((x - μ)2 + (y - μ)2 + (z - μ)2)/3 ]
we have to find the variance,
We now add a constant k to each data value and calculate the new mean μ'.
μ' = ((x + k) + (y + k) + (z + k)) / 3 = (x + y + z) / 3 + 3k/3 = μ + k
We now calculate the new mean standard deviation σ'.
σ' = √[ ((x + k - μ')2 +(y + k - μ')2+(z + k - μ')2)/3 ]
Note that x + k - μ' = x + k - μ - k = x - μ
also y + k - μ' = y + k - μ - k = y - μ and z + k - μ' = z + k - μ - k = z - μ
Therefore σ' = √[ ((x - μ)2 +(y - μ)2+(z - μ)2)/3 ] = σ
If we add the same constant k to all data values included in a data set, we obtain a new data set whose mean is the mean of the original data set PLUS k. The standard deviation does not change.
Hence, the standard deviation does not change.
Learn more about Standard Deviation and Mean here https://brainly.com/question/26941429
#SPJ4
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.