Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
The value of the standard deviation does not change and remains the same.
Given, a retired statistic professor has recorded final exam results for decades. the mean final exam score for the population of a student is 82.4 with a standard deviation of 6.5.
The mean μ = 82.4
The standard deviation σ = √[ ((x - μ)2 + (y - μ)2 + (z - μ)2)/3 ]
we have to find the variance,
We now add a constant k to each data value and calculate the new mean μ'.
μ' = ((x + k) + (y + k) + (z + k)) / 3 = (x + y + z) / 3 + 3k/3 = μ + k
We now calculate the new mean standard deviation σ'.
σ' = √[ ((x + k - μ')2 +(y + k - μ')2+(z + k - μ')2)/3 ]
Note that x + k - μ' = x + k - μ - k = x - μ
also y + k - μ' = y + k - μ - k = y - μ and z + k - μ' = z + k - μ - k = z - μ
Therefore σ' = √[ ((x - μ)2 +(y - μ)2+(z - μ)2)/3 ] = σ
If we add the same constant k to all data values included in a data set, we obtain a new data set whose mean is the mean of the original data set PLUS k. The standard deviation does not change.
Hence, the standard deviation does not change.
Learn more about Standard Deviation and Mean here https://brainly.com/question/26941429
#SPJ4
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.