Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

calculate least squares solution using svd a matrix has the singular value decomposition what is the solution to the least-squares problem that has minimal norm ?

Sagot :

The Least-squares problem that has minimal norm can be given using factorization.

The least squares method is used to find the best fit for a set of data points by minimizing the sum of the offsets from the plotted curve. Singular value decomposition (SVD) is a factorization of a real or complex matrix.

It is a widely used technique to decompose a matrix into several component matrices, exposing many of the useful and interesting properties of the original matrix. The singular value decomposition, guaranteed to exist, is A=UΣV.

When we have the equation system Ax=b, we calculate the SVD of A as A=UΣVT. The matrices U and VT have a very special property. They are unitary matrices. One of the main benefits of having unitary matrices like U and VT is that if we multiply one of these matrices by its transpose (or the other way around), the result equals the identity matrix.

The singular value decomposition (SVD) of matrix A is very useful in the context of least squares problems. It is also very helpful for analyzing the properties of a matrix.

To know more about the Least square method,

brainly.com/question/22513087

brainly.com/question/29560177

#SPJ4