At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
The rate constant expected at 37 °C when the rate constant for some reaction at 25 oc is 10 s-1, and if the arrhenius activation energy is 60 kj/mol is 5.39 s⁻¹
The Arrhenius equation can be used to calculate the rate constant of a reaction at a given temperature given the rate constant and activation energy at a reference temperature. The Arrhenius equation is given by:
k(T) = k(T₀) * e^(-Ea/RT)
Where k(T) is the rate constant at the desired temperature, k(T₀) is the rate constant at the reference temperature, Ea is the activation energy, R is the universal gas constant (8.314 J/molK) and T is the temperature in Kelvin.
To calculate the rate constant at 37 °C, we can plug in the values for k(T₀) and Ea:
k(37°C) = 10 s⁻¹ * e^(-(60 kJ/mol) / (8.314 J/molK * 310 K))
k(37°C) = 10 s⁻¹ * 0.539
k(37°C) = 5.39 s⁻¹
Therefore, the rate constant at 37 °C is 5.39 s⁻¹.
To know more about Arrhenius constant, click below:
https://brainly.com/question/14606142
#SPJ4
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.