At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
9%
Why?
The frequency for allele a is 30% or 0.3. Let's call this frequency p.
p^2 would then represent the frequency of genotype aa (this is is derived from the formula p^2+2pq+q^2=1 where p and q represent alleles a and A respectively. So p^2=aa, pq=Aa and q^2=AA)
0.3^2=0.09 or 9%
Why?
The frequency for allele a is 30% or 0.3. Let's call this frequency p.
p^2 would then represent the frequency of genotype aa (this is is derived from the formula p^2+2pq+q^2=1 where p and q represent alleles a and A respectively. So p^2=aa, pq=Aa and q^2=AA)
0.3^2=0.09 or 9%
Answer:
The correct answer would be 9%.
As the population is in genetic equilibrium, then the population must be following the Hardy-Weinberg equations:
p + q = 1 and
p² + q² + 2pq = 1
The frequency of A (dominant allele) in a population is 70 percent.
Thus, the value of p would be 70/100 which comes out be 0.7
Similarly, the value of q would be equal to 0.3
The frequency of individual with homozygous recessive genotype, that is, aa would be equal to q².
So, q² = [tex](0.3)^{2}[/tex] ⇒ 0.09
Thus, the frequency of individual with genotype aa would be equal to 9 percent.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.