At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer: 36.65 inches
Step-by-step explanation:
The length of arc with a central angle x and radius r in a circle is given by :-
[tex]l=\frac{x}{360^{\circ}}\times2\pi r[/tex]
Given : Radius of a circle = 60 inches
Central angle =[tex]35^{\circ}[/tex]
Now, the of length of arc is given by :-
[tex]l=\frac{35^{\circ}}{360^{\circ}}\times2\pi(60)\\\\\Rightarrow\ l=(0.097222222222)2(3.14159265359)(60)=36.6519142918\approx36.65[/tex]
Hence, the length of arc = 36.65 inches.
Answer:
36.65 inches
Step-by-step explanation:
To calculate arc length, multiply theta (in radians) with radius.
First, convert 35 degrees to radians (35pi)/180= 0.61087
Then, multiply by 60 inches= 36.65
36.65 inches
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.