Answered

Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

what is sin^2x/1+cosx

Sagot :

I think your question means (sin^(2)x)/(1+cosx), if yes then your answer is:

so the trig identity sin^(2) x = 1 - cos^(2)x , which is the form of expression of a^2 - b^2, which by factoring equals (a-b)(a+b).
So 1-cos^(2)x will become (1-cosx)(1+cosx)

Your final fraction would be [(1-cosx)(1+cosx)]/(1+cosx), where 1+cosx will cancel itself on the numerator and the denominator, thus your answer will be 1-cosx
[tex]\frac { \sin ^{ 2 }{ x } }{ 1+\cos { x } } \\ \\ =\frac { 1-\cos ^{ 2 }{ x } }{ 1+\cos { x } }[/tex]

[tex]\\ \\ =\frac { { 1 }^{ 2 }-\cos ^{ 2 }{ x } }{ \left( 1+\cos { x } \right) } \\ \\ =\frac { \left( 1+\cos { x } \right) \left( 1-\cos { x } \right) }{ \left( 1+\cos { x } \right) } \\ \\ =1-\cos { x } [/tex]