Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find where there are holes, we need to make the function = [tex] \frac{0}{0} [/tex].
[tex] \frac{(x-5)(x-2)}{(x-2)(x+4)} [/tex]
If you plug in [tex]x=2[/tex], you get [tex] \frac{0}{0} [/tex], which means there is a hole in the graph when [tex]x=2[/tex]
To find where there are vertical asymptotes, we need to make just the bottom 0.
Ex. [tex] \frac{1}{0} [/tex]
[tex] \frac{(x-5)(x-2)}{(x-2)(x+4)} [/tex]
If you plug in [tex]x=-4[/tex], you get [tex] \frac{(-9)(-6)}{0} = \frac{54}{0} [/tex], which means there is a vertical asymptote when [tex]x=-4[/tex]
[tex] \frac{(x-5)(x-2)}{(x-2)(x+4)} [/tex]
If you plug in [tex]x=2[/tex], you get [tex] \frac{0}{0} [/tex], which means there is a hole in the graph when [tex]x=2[/tex]
To find where there are vertical asymptotes, we need to make just the bottom 0.
Ex. [tex] \frac{1}{0} [/tex]
[tex] \frac{(x-5)(x-2)}{(x-2)(x+4)} [/tex]
If you plug in [tex]x=-4[/tex], you get [tex] \frac{(-9)(-6)}{0} = \frac{54}{0} [/tex], which means there is a vertical asymptote when [tex]x=-4[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.