Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find where there are holes, we need to make the function = [tex] \frac{0}{0} [/tex].
[tex] \frac{(x-5)(x-2)}{(x-2)(x+4)} [/tex]
If you plug in [tex]x=2[/tex], you get [tex] \frac{0}{0} [/tex], which means there is a hole in the graph when [tex]x=2[/tex]
To find where there are vertical asymptotes, we need to make just the bottom 0.
Ex. [tex] \frac{1}{0} [/tex]
[tex] \frac{(x-5)(x-2)}{(x-2)(x+4)} [/tex]
If you plug in [tex]x=-4[/tex], you get [tex] \frac{(-9)(-6)}{0} = \frac{54}{0} [/tex], which means there is a vertical asymptote when [tex]x=-4[/tex]
[tex] \frac{(x-5)(x-2)}{(x-2)(x+4)} [/tex]
If you plug in [tex]x=2[/tex], you get [tex] \frac{0}{0} [/tex], which means there is a hole in the graph when [tex]x=2[/tex]
To find where there are vertical asymptotes, we need to make just the bottom 0.
Ex. [tex] \frac{1}{0} [/tex]
[tex] \frac{(x-5)(x-2)}{(x-2)(x+4)} [/tex]
If you plug in [tex]x=-4[/tex], you get [tex] \frac{(-9)(-6)}{0} = \frac{54}{0} [/tex], which means there is a vertical asymptote when [tex]x=-4[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.