At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find where there are holes, we need to make the function = [tex] \frac{0}{0} [/tex].
[tex] \frac{(x-5)(x-2)}{(x-2)(x+4)} [/tex]
If you plug in [tex]x=2[/tex], you get [tex] \frac{0}{0} [/tex], which means there is a hole in the graph when [tex]x=2[/tex]
To find where there are vertical asymptotes, we need to make just the bottom 0.
Ex. [tex] \frac{1}{0} [/tex]
[tex] \frac{(x-5)(x-2)}{(x-2)(x+4)} [/tex]
If you plug in [tex]x=-4[/tex], you get [tex] \frac{(-9)(-6)}{0} = \frac{54}{0} [/tex], which means there is a vertical asymptote when [tex]x=-4[/tex]
[tex] \frac{(x-5)(x-2)}{(x-2)(x+4)} [/tex]
If you plug in [tex]x=2[/tex], you get [tex] \frac{0}{0} [/tex], which means there is a hole in the graph when [tex]x=2[/tex]
To find where there are vertical asymptotes, we need to make just the bottom 0.
Ex. [tex] \frac{1}{0} [/tex]
[tex] \frac{(x-5)(x-2)}{(x-2)(x+4)} [/tex]
If you plug in [tex]x=-4[/tex], you get [tex] \frac{(-9)(-6)}{0} = \frac{54}{0} [/tex], which means there is a vertical asymptote when [tex]x=-4[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.